## A brief bibliography on formality conjecture

This is an extremely brief and incomplete bibliography; an
interested reader should most certainly add to it at least "the
references therein".

#### Original papers:

- M. Kontsevich, "Deformation quantization of Poisson
manifolds. I", arXiv:math/9709040.
- Kontsevich, Maxim, "Deformation quantization of Poisson
manifolds". Lett. Math. Phys. 66 (2003), no. 3, 157--216.
- Dmitry E. Tamarkin, "Another proof of M. Kontsevich formality
theorem", arXiv:math/9803025.
- Dmitry E. Tamarkin, "Formality of Chain Operad of Small
Squares", arXiv:math/9809164.

#### Overviews and expositions:

- Keller, B. "Deformation quantization after Kontsevich and
Tamarkin", in " Deformation, quantification, theorie de Lie", 19--62,
Panorames et Syntheses, 20, Soc. Math. France, Paris, 2005.
- A very good and clear introduction into the subject, does not
assume any prior knowledge.

- Hinich, Vladimir, "Tamarkin's proof of Kontsevich formality
theorem". Forum Math. 15 (2003), no. 4, 591--614 (also avaiable
as arXiv:math/0003052).
- A concise but clear exposition of Tamarkin's proof.

#### Further reading:

- Kontsevich, Maxim, "Deformation quantization of algebraic
varieties". EuroConference Moshe Flato 2000, Part III (Dijon).
Lett. Math. Phys. 56 (2001), no. 3, 271--294.
- Yekutieli, Amnon, "Deformation quantization in algebraic
geometry". Adv. Math. 198 (2005), no. 1, 383--432.
- Van den Bergh, Michel, "On global deformation quantization in
the algebraic case". J. Algebra 315 (2007), no. 1, 326--395.
- Dolgushev, Vasiliy; Tamarkin, Dmitry; Tsygan, Boris, "The homotopy
Gerstenhaber algebra of Hochschild cochains of a regular algebra is
formal". J. Noncommut. Geom. 1 (2007), no. 1, 1--25.
- Damien Calaque, Michel Van den Bergh, "Global formality at the
$G_\infty$-level", arXiv:0710.4510, and "Hochschild cohomology and
Atiyah classes", arXiv:0708.2725.